Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Trace Elem Med Biol ; 83: 127404, 2024 May.
Article in English | MEDLINE | ID: mdl-38364464

ABSTRACT

BACKGROUND: Cutaneous leishmaniasis (LC) is an infectious vector-borne disease caused by parasites belonging to the genus Leishmania. Metallic nanoparticles (MNPs) have been investigated as alternatives for the treatment of LC owing to their small size and high surface area. Here, we aimed to evaluate the effect of MNPs in the treatment of LC through experimental, in vitro and in vivo investigations. METHODS: The databases used were MEDLINE/ PubMed, Scopus, Web of Science, Embase, and Science Direct. Manual searches of the reference lists of the included studies and grey literature were also performed. English language and experimental in vitro and in vivo studies using different Leishmania species, both related to MNP treatment, were included. This study was registered in PROSPERO (CRD42021248245). RESULTS: A total of 93 articles were included. Silver nanoparticles are the most studied MNPs, and L. tropica is the most studied species. Among the mechanisms of action of MNPs in vitro, we highlight the production of reactive oxygen species, direct contact of MNPs with the biomolecules of the parasite, and release of metal ions. CONCLUSION: MNPs may be considered a promising alternative for the treatment of LC, but further studies are needed to define their efficacy and safety.


Subject(s)
Leishmania tropica , Leishmaniasis, Cutaneous , Metal Nanoparticles , Humans , Metal Nanoparticles/therapeutic use , Silver/therapeutic use , Silver/pharmacology , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology
2.
Viruses ; 15(4)2023 04 10.
Article in English | MEDLINE | ID: mdl-37112918

ABSTRACT

SARS-CoV-2 (COVID-19) infection is responsible for causing a disease with a wide spectrum of clinical presentations. Predisposition to thromboembolic disease due to excessive inflammation is also attributed to the disease. The objective of this study was to characterize the clinical and laboratory aspects of hospitalized patients, in addition to studying the pattern of serum cytokines, and associate them with the occurrence of thromboembolic events. METHODOLOGY: A retrospective cohort study with 97 COVID-19 patients hospitalized from April to August 2020 in the Triângulo Mineiro macro-region was carried out. A review of medical records was conducted to evaluate the clinical and laboratory aspects and the frequency of thrombosis, as well as the measurement of cytokines, in the groups that presented or did not present a thrombotic event. RESULTS: There were seven confirmed cases of thrombotic occurrence in the cohort. A reduction in the time of prothrombin activity was observed in the group with thrombosis. Further, 27.8% of all patients had thrombocytopenia. In the group that had thrombotic events, the levels of IL1b, IL-10, and IL2 were higher (p < 0.05). CONCLUSIONS: In the studied sample, there was an increase in the inflammatory response in patients with thrombotic events, confirmed by the increase in cytokines. Furthermore, in this cohort, a link was observed between the IL-10 percentage and an increased chance of a thrombotic event.


Subject(s)
COVID-19 , Thrombosis , Humans , COVID-19/complications , SARS-CoV-2 , Interleukin-10 , Retrospective Studies , Thrombosis/etiology , Cytokines
3.
Pharmaceutics ; 14(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36559136

ABSTRACT

Tegumentary leishmaniasis (TL) is caused by parasites of the genus Leishmania. Leishmania braziliensis (L.b) is one of the most clinically relevant pathogens that affects the skin and mucosa, causing single or multiple disfiguring and life-threatening injuries. Even so, the few treatment options for patients have significant toxicity, high dropout rates, high cost, and the emergence of resistant strains, which implies the need for studies to promote new and better treatments to combat the disease. Zinc oxide nanocrystals are microbicidal and immunomodulatory agents. Here, we develop new Ag-ZnO/xAgO nanocomposites (NCPs) with three different percentages of silver oxide (AgO) nanocrystals (x = 49%, 65%, and 68%) that could act as an option for tegumentary leishmaniasis treatment. Our findings showed that 65% and 68% of AgO inhibit the extra and intracellular replication of L.b. and present a high selectivity index. Ag-ZnO/65%AgO NCPs modulate activation, expression of surface receptors, and cytokine production by human peripheral blood mononuclear cells toward a proinflammatory phenotype. These results point to new Ag-ZnO/AgO nanocomposites as a promising option for L. braziliensis treatment.

4.
Oxid Med Cell Longev ; 2022: 7985596, 2022.
Article in English | MEDLINE | ID: mdl-36193083

ABSTRACT

Aging is a complex process often associated with a chronic inflammatory profile that alters several biological functions, including the immune system and cognitive and physical capacity. The practice of physical activity is increasingly gaining popularity as a method of preventing infections, depression, and other disorders that affect the quality of life of the elderly. Thus, this work analyzes the profile of cytokines and molecular markers expressed in immune cells of elderly people who practice physical activities or not, evaluating their impacts on the immune system and quality of life. For this, 48 individuals were recruited, and peripheral blood samples were collected for hemogram analysis, cytokine determination, and immunophenotyping. Elderly people were separated into two groups: practitioners with low-intensity physical activity and non-practitioners. Quality of life was assessed using the Whoqol-Old instrument, and depression was assessed using the Beck II Depression Inventory. When comparing the scores of the Whoqol-Old and Beck questionnaires, we observed a significant negative correlation between these two factors. The perception of a higher quality of life was present in the elderly who exercised and was related to greater autonomy and sensory abilities, whereas the presence of depression was lower. In the hemogram, we observed higher basophil and segmented counts in the sedentary elderly, whereas lymphocytes and monocytes had lower counts. Elderly practitioners of physical activities had higher levels of IFN-γ, IL-4, and IL-10; increased expression of CD69, PD1, and TIM-3 in CD4+ T lymphocytes and increased CD14+CD80+ and CD14+CD86+ monocytes. Elderly people with an increased perception of quality of life had higher levels of IFN-γ, higher expression of CD14+CD80+CD86+, and decreased levels of TRAIL. An increase in TRAIL was observed in individuals with depression, in addition to an increased expression of CD14+CD86+. These results show a clear correlation between the quality of life, level of depression, physical activity, and immune system function. Although some cytokines with a typical proinflammatory profile (IFN-γ) were observed, the results point to a protective state with benefits reflected in the general well-being of the elderly who exercise.


Subject(s)
Interleukin-10 , Quality of Life , Aged , CD4-Positive T-Lymphocytes , Cytokines/metabolism , Depression , Exercise , Hepatitis A Virus Cellular Receptor 2 , Humans , Immunophenotyping , Interleukin-4 , Monocytes/metabolism
5.
Biomedicines ; 10(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36140164

ABSTRACT

Multiple sclerosis is mediated by self-reactive myelin T and B cells that lead to axonal and myelin damage. The immune response in multiple sclerosis involves the participation of CD4+ T cells that produce cytokines and chemokines. This participation is important to find markers for the diagnosis and progression of the disease. In our work, we evaluated the profile of cytokines and chemokines, as well as the production of double positive CD4+ T cells for the production of IFNγ IL-17 in patients with multiple sclerosis, at different stages of the disease and undergoing different treatments. We found that relapsing-remitting patients had a significant increase in IL-12 production. About IL-5, its production showed significantly higher levels in secondarily progressive patients when compared to relapsing-remitting patients. IFN-γ production by PBMCs from secondarily progressive patients showed significantly higher levels. This group also had a higher percentage of CD4+ IFNγ+ IL-17+ T cells. The combination of changes in certain cytokines and chemokines together with the presence of IFNγ+ IL-17+ double positive lymphocytes can be used to better understand the clinical forms of the disease and its progression.

6.
J Infect Dev Ctries ; 16(7): 1206-1217, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35905026

ABSTRACT

INTRODUCTION: Candida albicans is the main agent of the most common fungal infection, Candidiasis. It is an opportunistic and dangerous pathogen, especially in immunosuppressed patients. The biological properties of Morinda citrifolia (noni) make it a potent antifungal. In this study, antifungal effect of M. citrifolia was evaluated to verify its effect on human cells. METHODOLOGY: Extract of M. citrifolia was used against strains of C. albicans (cEC 1291). Glucose consumption in C. albicans biofilm was determined at different concentrations of M. citrifolia, and germ tube formation was evaluated in the presence and absence of M. citrifolia. Fungicidal activity was determined by the kinetics of fungal cell death. THP-1 and HeLa cells were used for cell viability and apoptosis, and cell proliferation assays, respectively. RESULTS: Cells treated with M. citrifolia maintained higher concentration of glucose than the control group (p < 0.05). Germ tube formation was inhibited in cells treated with M. citrifolia (p < 0.05). M. citrifolia exerted a cytotoxic effect on C. albicans cells with 99.99% lethality after 6.82 h (1:1 and 1:2), and reduced the viability of THP-1 cells by 25% and 67% after 12 and 36 h, respectively. Annexin V expression in THP-1 increased in groups that received higher concentrations of M. citrifolia (p < 0.05), reducing the proliferation of THP-1 and HeLa cells (2.8-fold). A greater cytotoxic effect was observed in fungal cells. CONCLUSIONS: These results indicate that M. citrifolia exerts biological activity against C. albicans and reduces the viability and proliferation of human cells.


Subject(s)
Antineoplastic Agents , Morinda , Antifungal Agents/pharmacology , Candida albicans , Glucose/pharmacology , HeLa Cells , Humans , Plant Extracts/pharmacology
7.
Curr Med Chem ; 29(26): 4547-4573, 2022.
Article in English | MEDLINE | ID: mdl-35220932

ABSTRACT

Leishmaniasis, a cutaneous, mucocutaneous, or visceral parasitic disease caused by the protozoa of the genus Leishmania, is responsible for approximately 20-40 thousand deaths annually, with Brazil, India, and certain countries in Africa being the most affected. In addition to the parasite's ability to evade the host's immune system, the incidence of vectors, genetics of different hosts, and several deaths are attributed to the limited conventional treatments that have high toxicity, low effectiveness, and prolonged therapeutic regimens. Thus, the development of new alternative therapeutic strategies remains warranted. Metallic nanoparticles, such as gold, silver, zinc oxide, and titanium dioxide, have shown promising therapeutic tools since they are easily prepared and chemically modified, have a broad spectrum of action and low toxicity, and can generate reactive oxygen species and other immune responses. This review explores the progress of the use of metallic nanoparticles as new tools in the treatment of leishmaniasis and discusses the gaps in knowledge hindering the development of a safe and effective therapeutic intervention against these infections.


Subject(s)
Antiprotozoal Agents , Leishmania , Leishmaniasis, Cutaneous , Leishmaniasis , Metal Nanoparticles , Antiprotozoal Agents/therapeutic use , Humans , Leishmaniasis/drug therapy , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Metal Nanoparticles/therapeutic use , Silver/therapeutic use
8.
Parasitology ; 149(3): 418-426, 2022 03.
Article in English | MEDLINE | ID: mdl-34814960

ABSTRACT

Congenital transmission of Chagas disease plays an important role in endemic countries because it is not a diagnosis that is encountered frequently in prenatal care. Due to limited information regarding congenital transmission of Trypanosoma cruzi in Mexico, the present study aimed to investigate protozoan infectivity and modulation of immune responses in human placental explants infected with T. cruzi Ia Mexican strains. The Inc-5 strain showed increased infectivity and modulated IL-1ß, IL-10 and TLR-4, decreasing their expression after 24 h of infection. Both strains (Inc-5 and Ninoa) stimulated the production of TNF-α and decreased IL-6 levels 96 h after infection. An important detachment of the syncytiotrophoblast caused by infection with T. cruzi was observed after 24 h of infection. In this study, ex vivo infection of human placental villi was performed to better understand interactions involving parasitic T. cruzi and human placental tissue. It was concluded that the strains of TcIa present parasitism in placental tissue, modulation of the innate immune system of the placenta, and cause intense detachment of the syncytiotrophoblast, a fact that may be more associated with abortion and premature birth events than the congenital transmission itself, justifying the low rate of this transmission mechanism by this genotype.


Subject(s)
Chagas Disease , Parasites , Trypanosoma cruzi , Animals , Chagas Disease/parasitology , Female , Humans , Mexico , Placenta/parasitology , Pregnancy , Trypanosoma cruzi/physiology
9.
J Mater Sci Mater Med ; 32(3): 25, 2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33675445

ABSTRACT

This communication aims to propose new insights of Nb2O5-based coatings on the 316L SS surface with great prospects to be used in the dentistry field as brackets. The Nb2O5 thin film was incorporated into the 316L SS by using PVD method. For this purpose, the studied system was characterized structurally and morphologically by using AFM, FTIR-IRRAS, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Biological assays were performed using human gingival fibroblast cell-line HGF-1. In agreement with FTIR and Raman results, the XPS technique indicates that Nb is present in an oxidation state assigned to Nb2O5. Furthermore, the coatings produced by PVD technique are less toxic and induces less inflammation in gingival cells (cell-line HGF-1), suggesting the strategy of use Nb2O5 thin film to cover the 316L SS promoted since its protection of the physiological environment to its biocompatibility improvement.


Subject(s)
Coated Materials, Biocompatible , Materials Testing , Niobium/chemistry , Oxides/chemistry , Surface Properties , Humans , Orthodontic Brackets , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared , Stainless Steel
10.
Mediators Inflamm ; 2019: 7214798, 2019.
Article in English | MEDLINE | ID: mdl-31636507

ABSTRACT

Dendritic cells (DCs) are a type of antigen-presenting cells that play an important role in the immune response against Trypanosoma cruzi, the causative agent of Chagas disease. In vitro and in vivo studies have shown that the modulation of these cells by this parasite can directly affect the innate and acquired immune response of the host in order to facilitate its biological cycle and the spreading of the species. Many studies show the mechanisms by which T. cruzi modulates DCs, but the interaction of these cells with the Mexican strains of T. cruzi such as Ninoa and INC5 has not yet been properly investigated. Here, we evaluated whether Ninoa and INC5 strains evaded the immunity of their hosts by modulating the biology and function of murine DCs. The CL-Brener strain was used as the reference strain. Herein, it was demonstrated that Ninoa was more infective toward bone marrow-derived dendritic cells (BMDCs) than INC5 and CL-Brener strains in both BMDCs of BALB/c and C57BL/6 mice. Mexican strains of T. cruzi induced different cytokine patterns. In BMDCs obtained from BALB/c mice, Ninoa strain led to the reduction in IL-6 and increased IL-10 production, while in C57BL/6 mice Ninoa strain considerably increased the productions of TNF-α and IL-10. Also, Ninoa and INC5 differentially modulated BMDC expressions of MHC-II, TLR2, and TLR4 in both BALB/c and C57BL/6 mice compared to Brazilian strain CL-Brener. These results indicate that T. cruzi Mexican strains differentially infect and modulate MHC-II, toll-like receptors, and cytokine production in DCs obtained from C57BL/6 and BALB/c mice, suggesting that these strains have developed particular modulatory strategies to disrupt DCs and, consequently, the host immune responses.


Subject(s)
Bone Marrow Cells/metabolism , Cytokines/metabolism , Dendritic Cells/metabolism , Trypanosoma cruzi/pathogenicity , Animals , Interleukin-10/metabolism , Interleukin-6/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism
11.
Data Brief ; 7: 844-7, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27077085

ABSTRACT

The data presented here were obtained from the saliva of three triatominae, Rhodnius prolixus, Triatoma lecticularia and Panstrongylus herreri from Montandon et al. study, doi:10.1016/j.ibmb.2016.02.009 [3]. These data were obtained from spectra generated by the mass spectrometry of proteins observed through the analysis of 2-D electrophoretic profiles. The data were analyzed according to the UniProt code, protein name, protein group, isoelectric point and molecular weight, electrophoretic profile, molecular mass referring to UniProt, volume percentage referring to the spot of the electrophoretic profile, number of peptides and percent coverage found by mass spectrometry related to the particular proteins. In addition, there characterizations made the most significant protein per spot, and also characterizations made for biological processes and molecular functions for all identified proteins.

12.
Insect Biochem Mol Biol ; 71: 83-90, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26940473

ABSTRACT

Triatomines are hematophagous arthropods that transmit Trypanosoma cruzi and Trypanosoma rangeli. Feeding behavior and pathogen transmission is known to vary between the different species, and this characteristic is directly or indirectly dependent on the bioactive molecules of the saliva that facilitate the vector-host-parasite interaction. Here, we identify, characterize and compare the sialoproteomic (from the Greek sialo: saliva) repertoire of important species of the main triatomine genera in the Americas (Rhodnius prolixus, Triatoma lecticularia and Panstrongylus herreri) to better explain this interaction through two-dimensional electrophoresis and mass spectrometry. We identified 221 proteins, 69 from R. prolixus, 100 from T. lecticularia and 52 from P. herreri. We identified high abundance molecules with a great potential to modulate host defenses and homeostasis, highlighting Nitrophorin-4 (28.7%), Salivary lipocalin-5 (65.2%) and Putative triabin (20.5%) in R. prolixus, T. lecticularia and P. herreri, respectively. We also observed that only a single hypothetical protein is shared among three species, which was not functionally categorized. This study corroborates previous findings with R. prolixus, increasing the knowledge about this species with relevant proteomic information and comparisons with the other two targets of the study, T. lecticularia and P. herreri, for which no studies are available from a proteomics perspective.


Subject(s)
Biodiversity , Insect Proteins/chemistry , Panstrongylus/chemistry , Rhodnius/chemistry , Triatoma/chemistry , Animals , Electrophoresis, Gel, Two-Dimensional , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Vectors/chemistry , Insect Vectors/genetics , Insect Vectors/metabolism , Mass Spectrometry , Panstrongylus/genetics , Panstrongylus/metabolism , Proteomics , Rhodnius/genetics , Rhodnius/metabolism , Saliva/chemistry , Saliva/metabolism , Triatoma/genetics , Triatoma/metabolism
13.
Parasit Vectors ; 8: 206, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25889515

ABSTRACT

BACKGROUND: Chagas disease is caused by the protozoan Trypanosoma cruzi and is characterized by cardiac, gastrointestinal, and nervous system disorders. Although much about the pathophysiological process of Chagas disease is already known, the influence of the parasite burden on the inflammatory process and disease progression remains uncertain. METHODS: We used an acute experimental disease model to evaluate the effect of T. cruzi on intestinal lesions and assessed correlations between parasite load and inflammation and intestinal injury at 7 and 14 days post-infection. Low (3 × 10(2)), medium (3 × 10(3)), and high (3 × 10(4)) parasite loads were generated by infecting C57BL/6 mice with "Y"-strain trypomastigotes. Statistical analysis was performed using analysis of variance with Tukey's multiple comparison post-test, Kruskal-Wallis test with Dunn's multiple comparison, χ2 test and Spearman correlation. RESULTS: High parasite load-bearing mice more rapidly and strongly developed parasitemia. Increased colon width, inflammatory infiltration, myositis, periganglionitis, ganglionitis, pro-inflammatory cytokines (e.g., TNF-α, INF-γ, IL-2, IL-17, IL-6), and intestinal amastigote nests were more pronounced in high parasite load-bearing animals. These results were remarkable because a positive correlation was observed between parasite load, inflammatory infiltrate, amastigote nests, and investigated cytokines. CONCLUSIONS: These experimental data support the idea that the parasite load considerably influences the T. cruzi-induced intestinal inflammatory response and contributes to the development of the digestive form of the disease.


Subject(s)
Chagas Disease/pathology , Inflammation/pathology , Intestines/pathology , Parasite Load , Trypanosoma cruzi/isolation & purification , Animals , Chagas Disease/parasitology , Cytokines/analysis , Disease Models, Animal , Histocytochemistry , Immunohistochemistry , Intestines/parasitology , Mice, Inbred C57BL , Microscopy , Parasitemia/parasitology , Survival Analysis , Time Factors
14.
Biomed Res Int ; 2013: 576479, 2013.
Article in English | MEDLINE | ID: mdl-24224172

ABSTRACT

Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. ALI is characterized by increased permeability of the alveolar-capillary membrane, edema, uncontrolled neutrophils migration to the lung, and diffuse alveolar damage, leading to acute hypoxemic respiratory failure. Although corticosteroids remain the mainstay of ALI treatment, they cause significant side effects. Agents of natural origin, such as medicinal plants and their secondary metabolites, mainly those with very few side effects, could be excellent alternatives for ALI treatment. Several studies, including our own, have demonstrated that plant extracts and/or secondary metabolites isolated from them reduce most ALI phenotypes in experimental animal models, including neutrophil recruitment to the lung, the production of pro-inflammatory cytokines and chemokines, edema, and vascular permeability. In this review, we summarized these studies and described the anti-inflammatory activity of various plant extracts, such as Ginkgo biloba and Punica granatum, and such secondary metabolites as epigallocatechin-3-gallate and ellagic acid. In addition, we highlight the medical potential of these extracts and plant-derived compounds for treating of ALI.


Subject(s)
Acute Lung Injury/drug therapy , Catechin/analogs & derivatives , Plant Extracts/therapeutic use , Plants, Medicinal/metabolism , Acute Lung Injury/pathology , Adrenal Cortex Hormones/adverse effects , Capillary Permeability/drug effects , Catechin/chemistry , Catechin/therapeutic use , Ginkgo biloba/chemistry , Ginkgo biloba/metabolism , Humans , Lung/drug effects , Lung/pathology , Plant Extracts/metabolism , Plants, Medicinal/chemistry , Secondary Metabolism
15.
Vet Parasitol ; 167(2-4): 260-73, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-19836891

ABSTRACT

Tick saliva contains molecules that are inoculated at the site of attachment on their hosts in order to modulate local immune responses and facilitate a successful blood meal. Bovines express heritable, contrasting phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus: breeds of Bos taurus indicus are significantly more resistant than those of Bos taurus taurus. Tick saliva may contain molecules that interfere with adhesion of leukocytes to endothelium and resistant hosts may mount an inflammatory profile that is more efficient to hamper the tick's blood meal. We show in vitro that adhesion of peripheral blood mononuclear cells to monolayers of cytokine-activated bovine umbilical endothelial cells was significantly inhibited by tick saliva. The inflammatory response to bites of adults of R. microplus mounted by genetically resistant and susceptible bovine hosts managed in the same pasture was investigated in vivo. The inflammatory infiltrates and levels of message coding for adhesion molecules were measured in biopsies of tick-bitten and control skin taken when animals of both breeds were exposed to low and high tick infestations. Histological studies reveal that cutaneous reactions of resistant hosts to bites of adult ticks contained significantly more basophils and eosinophils compared with reactions of the susceptible breed. Expression of the adhesion molecules - intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin - was higher in adult-infested skin of susceptible hosts undergoing low infestations compared to resistant hosts; when host was exposed to high infestations expression of these adhesion molecules was down-regulated in both phenotypes of infestations. Expression of leukocyte adhesion glycoprotein-1 (LFA-1) was higher in skin from susceptible hosts undergoing low or high infestations compared to resistant hosts. Conversely, higher levels of E-selectin, which promotes adhesion of memory T cells, were expressed in skin of resistant animals. This finding may explain the resistant host's ability to mount more rapid and efficient secondary responses that limit hematophagy and infestations. The expression profiles observed for adhesion molecules indicate that there are differences in the kinetics of the inflammatory reactions mounted by resistant and susceptible hosts and the balance between tick and host is affected by the number of tick bites a host receives. We show that the contrasting phenotypes of infestations seen in bovines infested with R. microplus are correlated with differences in the cellular and molecular composition of inflammatory infiltrates elicited by bites with adult ticks.


Subject(s)
Cattle Diseases/parasitology , Inflammation/veterinary , Rhipicephalus/physiology , Tick Infestations/veterinary , Animals , Cattle , Cattle Diseases/genetics , Cattle Diseases/pathology , Cells, Cultured , Genetic Predisposition to Disease , Inflammation/genetics , Inflammation/parasitology , Inflammation/pathology , Saliva , Tick Infestations/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...